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Abstract

A new method has been developed for computing the fringe capacitance of the junctions in microstrip lines.
It utilizes Galerkin's method in the spectral domain and is numerically more efficient than many conventional

methods.,
Introduction

Although the modal fields in the microstrip lines
are of hybrid nature,! it was proved that at low fre-
quencies the quasi-TEM approximation holds very well
and is, in fact, very practical in designing such
transmission lines.?’?® In the actual microwave IC
design, one normally encounters several finite sec-
tions and various types of junctions of microstrip
lines. Hence, it is very important to establish ac-

curate methods for solving these structures and there-

by to derive a reliable design procedure.

In this paper, excess or fringing capacitance of
finite or semi-infinite sections of microstrip line
was calculated at low operating frequencies using an
entirely new technique. It is based on the formu-
lation and the derivation of the matrix equation in
the spectral domain as opposed to the conventional
space domain analysis. The derived algebraic equa-
tion was solved using Galerkin's method in the spec-
tral domain.

Theory

Figure 1 shows a typical finite section of micro-
strip line. In the low frequency range, the Poisson
equation is solved for the potential functions
$(x,y,2) in the structure. To this end, the Poisson
equation for the charge and potential is Fourier
transformed with respect to both the x and z direc-

tions. The transform is defined by
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The potentials of the center strip and the ground
plane are assumed to be one and zero volts, respect-
ively. The boundary and continuity conditions in
the transformed domain are

(1) $(a,-b,8) = 0
(i1) $(a,y,B) + 0 as y + + =
(ii) $(a,06,8) = $(a,0-,8)
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where B is the Fourier transform of the charge dis-
tribution on the strip, and € is the free space

permittivity. When applying ghese conditions to the
Poisson equation in the transform domain, we obtain

G@.8) B (@B = §,(0,0,8) + §_(2,0,8) @

where
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In equation (2), $i and %0 are the transforms of the
potential functions on the strip and outside of the
strip at y = 0, respectively. Note that we have ob-
tained an algebraic equation (2) rather than an inte-
gral equation which is usually derived in the space
domain. This is one of the features of the method
which reduce the computational effort greatly. The
equation thus derived containg two unknowns, the trans-
forms of charge on,the strip p and the potential out-
side of the strip 0"

The next step is to apply Galerkin's method in the
transform domain. This step eliminates one of the un-
knowns and converts the algebraic equation into a
matrix equation which is subsequently solved for the
unknown coefficients. The matrix equation is

N
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and ;m are the basis functions. The elimination of

$o can be shown easily by the application of Parseval's
relation.” Finally, the charge distribution is ex-
pressed in the space domain in terms of the super-
position of the inverse transforms of the basis func-
tions weighted by the coefficients d, just obtained.

It is convenient to choose the basis functions
whose inverse transforms are analytically known and
have the finite support in the space domain. In the
actual calculation, we have used, for the inverse of
basis functions, the polynomials in x and z on the
strip and zero outside, viz

g (x:2) =?-1[%’m(a,6)] = ]X]k—l lz]j_l, on strip
0 , otherwise
m=1 (k=1, j=1), m =2 (k=2, j=1)...



Numerical Results

Numerical results were obtained first for the
% = W case. Figure 2 shows the results obtained for
dielectric constants of 1.0 and 9.6. The capacitance
is normalized by the approximate parallel-plate ca-
pacitance eW?/b. As expected, the normalized capaci-
tance approaches one as b/W becomes small, Also,
note that for the higher dielectric constant, e.g.,
9.6, the capacitance approaches one more rapidly.
This is also to be expected since the fringing effect
decreases with increasing dielectric constant of the
substrate. These results compare very well with the
results of Farrar and Adams,5 who used the point-
matching method, and Reitan® who employed the method
of sub-areas for e, = 1.0.

The calculation of the fringing or exXcess ca-
pacitance of a semi-infinite microstrip was as fol-
lows: As the length of the section became arbitrar-
ily long, it is apparent that the charge distribution
in the mid-section will approach that of a uniform
microstrip transmission line. Hence, if we can cal-
culate the total capacitance of this finitely long
rectangular line and extract the line capacitance for
a uniform line of the same width, it is possible to
obtain the excess capacitance of a semi-infinite
microstrip line.

of the gemi-infinite

The excess capacitance C
the equation5

microstrip is calculated by

2im cex(z) = 1/2[¢c(L) - ILCO] 5
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where C(2) is the total capacitance of a rectangular
section of length % and width W, C_is the line ca-
pacitance of a uniform microstrip of width W, and

the factor of 1/2 accounts for the discontinuities

at both ends of the strip. The length of the section
is increased until Cgy (R + AL) = Cex(l). That is,
the excess capacitance does not increase significant-
ly when the length is made longer than some finite
length %. At this point, it can be assumed that the
charge distribution has become uniform.

Figure 3 shows a plot of the capacitance C(R) of
a rectangular microstrip with W/b = 1 as a function
of length. It is seen that C(L) is a linear function
of length for /W > 4.

Figure 4 shows the excess capacitance calculated
for a semi-infinite microstrip with €. = 9.6 over
the range W/b from 0.1 to 10. The results are com-
pared with those of Farrar and Adams; the agreement
is good for W/b < 4., However, our results indicate
that the lumped capacitance normalized by the width
becomes a constant for wide strips. Intuitively,
this can be visualized by considering the slowly
varying charge distribution for a wide strip.

Conclusion

It should be noted that the method described in
this paper has many advantages, one of which is its
numerical efficiency. Another feature is that many
other types of junctions and finite structures can
be solved by the method in this paper in its present
form or with slight modification.
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