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Abstract

IN MICROSTRIP LINES

A new method has been developed for computing the fringe capacitance of the junctions in microstrip lines.
It utilizes Galerkints method in the
methods.

Introduction

Although the modal fields in the

are of hybrid nature, 1 it was proved

auencies the auasi-TEM amroximation

spectral domain and is numerically more efficient than many conventional

,

microstrip lines

that at low fre-

holds verv well.-
and is, in fact, very practical in designing such

2>3 ln the actual tiCroWave lCtransmission lines.

design, one normally encounters several finite sec-

tions and various types of junctions of microstrip

lines. Hence, it is very important to establish ac-

curate methods for solving these structures and there-
by to derive a reliable design procedure.

In this paper, excess or fringing capacitance of

finite or semi-infinite sections of microstrip line

was calculated at low operating frequencies using an

entirely new technique. It is based on the formu-

lation and the derivation of the matrix equation in

the epectral domain as opposed to the conventional

space domain analysis. The derived algebraic equa-

tion was solved using Galerkin’s method in the spec-

tral domain.
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Figure 1 shows a typical finite section of micro-

strip line. In the low frequency range, the Poisson

equation is solved for the potential functions

$(x,Y, z) in the structure. To this end, the Poisson
equation for the charge and potential is Fourier

transformed with respect to both the x and z direc-

tions. The transform is defined by

?(a,Y,B)= 7 ~ @(x,y,z,) ej(m+Bz)dxdz (1)
-m-m

The potentials of the center strip and the ground
plane are assumed to be one and zero volte, respect-

ively. The boundary and continuity conditions in
the transformed domain are

(i) $(ci,-b,~) = O

(ii) ~(cl,y,~) + O as y ++~

(iii) $(Ci, O+,@) = l(a,o-,~)

where & is the Fourier transform of the charge dis–
tribution on the strip, and c is the free space

permittivity. When applying ?hese conditions to the
Poisson equation in the transform domain, we obtain

G(c@’; (u,(3) = li(a,0,,8) + $o(a,o,~) (2)

where

In equation (2), ii and ~. are the transforms of the

potential functions on the strip and outside of the
strip at y = O, respectively. Note that we have ob–
tained an algebraic equation (2) rather than an inte–
gral equation which is usually derived in the space

domain. This is one of the features of the method
which reduce the computational effort greatly. The
equation thus derived contain ~ two unknowns, the trans-
forms of charge on the strip p and the potential out-

side of the strip $6

The next step is to apply Galerkin’s method in the

transform domain. This step eliminates one of the un–

knowns lo and converts the algebraic equation into a

matrix equation which is subsequently solved for the

unknown coefficients. The matrix equation is

N
ZKd=f m=l ,2,..,, N

mn n mn=l
(4)

where

and ‘& are the basis functions. The elimination of

$0 ,ca~ be shown easily by the application of Parseval’s
relation. Finally, the charge distribution is ex-
pressed in the space domain in terms of the super–
position of the inverse transforms of the basis func-
tions weighted by the coefficients dn just obtained.

It is convenient to choose the basis functions
whose inverse transforms are analytically known and

have the finite support in the space domain. In the

actual calculation, we have used, for the inverse of

basis functions, the polynomials in x and z on the
strip and zero outside, viz

JCm(x,a =fi-1[%m(a,5)l = lx]k-l ]zp, on strip

Lo , otherwise

m = 1 (k=l, j=l), m = 2 (k=2, j=l)...
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Numerical Results

Numerical results were obtained first for the

k = W case. Figure 2 shows the results obtained for
dielectric constants of 1.0 and 9.6. The capacitance

is normalized by the approximate parallel–plate ca-
pacitance cW2/b. As expected, the normalized capaci-

tance approaches one as blhl becomes small. Also ,
note that for the higher dielectric constant, e.g. ,

9.6, the capacitance approaches one more rapidly.

This is aleo to be expected since the fringing effect
decreases with increasing dielectric constant of the
substrate. These results compare very well with the

results of Farrar and Adams,s who used the point-
matching method, and ReitanK who employed the method
of sub–areas for E = 1.0.

r

The calculation of the fringing or excess ca-

pacitance of a semi-infinite microstrip was as fol-

lows : As the length of the section became arbitrar-
ily long, it is apparent that the charge distribution

in the mid-section will approach that of a uniform
microstrip transmission line. Hence, if we can cal-

culate the total capacitance of this finitely long

rectangular line and extract the line capacitance for

a uniform line of the same width, it is possible to

obtain the excess capacitance of a semi-infinite
microstrip line.

The excess capacitance Cex of the semi-infinite
microstrip is calculated by the equations

Limcex(!) = l/2[C(i) - KO1 (5)

J?,-k-o

where C(!?.) is the total capacitance of a rectangular

section of length L and width W, C is the line ca-
pacitance of a uniform microstrip ~f width W, and

the factor of 1/2 accounts for the discontinuities
at both ends of the strip. The length of the section

is increased until Cex (i + AL) c C=(i). That is,

the excess capacitance does not increase significant-
ly when the length is made longer than some finite

length g. At this point, it can be assumed that the
charge distribution has become uniform.

Figure 3 shows a plot of the capacitance C(R) of

a rectangular microstrip with W/b = 1 as a function

of length. It is seen that C(k) is a linear function
of length for L/td B 4.

Figure 4 shows the excess capacitance calculated
for a semi–infinite microstrip with &r = 9.6 over
the range W/b from 0.1 to 10. The results are com-

pated with those of Farrar and Adams; the agreement
is good for W/b < 4. However, our results indicate

that the lumped capacitance normalized by the width

becomes a constant for wide strips. Intuitively,

this can be visualized by considering the slowly

varying charge distribution for a wide atrip.
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Conclusion

It ehould be noted that the method described in

this paper has many advantages, one of which is its
numerical efficiency. Another feature is that many

other types of junctions and finite structures can
be solved by the method in this paper in its present
form or with slight modification.
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FIG. 1. FINITE SECTION OF MICROSTRIP LINE
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FIG. 2. CAPACITANCE OF A SQUARR SECTION OF
MICROSTRIP
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FIG. 3. CAPACITANCE OF A RECTANGLUAR MICROSTRIP
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FIG. 4. EXCESS CAPACITANCE OF A SRMI-INFINITE

MICROSTRIP LINE

70


